How Far Can We Go to Replace Lead?

The end is nigh for lead in solder, as our columnist Tim O’Neill writes this month in CIRCUITS ASSEMBLY.

Rules governing use of the materials — Directive 2015/863, aka RoHS 3 — are coming online and will be in full force by 2019.

Suppliers have until July 22, 2019 to meet the stricter provisions, which includes no more than 0.1% lead in medical devices, which are joining consumer, industrial and other electronics products on the effectively banned list.

The question Tim poses is, What comes next? Already, the future of commonplace unleaded alloys such as SAC is being questioned. As Tim writes, “It is even feasible SAC 305 will be dislodged by a new de facto alloy that better serves the needs of the market.”

A Norwegian scientist believes he may have the answer. As noted in Phys.org this week, Dr. Henrik Soensteby of the University of Oslo is working on an alternative alloy that contains nothing but common — and essentially benign — elements. In conjuring up his alloy, Soensteby is mixing sodium, potassium and oxygen with niobium, a very strong metal typically used in steel. While niobium dust is reported to cause eye and skin irritation, it reportedly is nontoxic, at least in the volumes used.

It’s not so clear yet how much niobium would be needed. Brazil is the biggest supplier of niobium, producing more than 85% of it each year. Other sources include Zaire, Russia, Nigeria and Canada. World production is relatively light: around 25,000 tonnes per year. Some scientists believe there are ample supplies still in the ground. There’d better be: Some 5 million tonnes a year of lead ores are mined each year, although obviously not all that goes into electronics.

Soensteby is optimistic he can use atomic layer deposition (ALD), a vapor phase method that uses gas at controlled temperatures to stimulate a reaction with the substrate; the output is thin films. It is an emerging technology in semiconductor manufacturing. There are many, many questions, of course. First and foremost, does the alloy actually, you know, work? Also, ALD typically involves higher temperatures than are used in electronics assembly: Would it work with today’s packaging? Will other technologies such as 3D printing or Joe Fjelstad’s solderless Occam process supplant the need for solder in any form?

Still, materials science is the most exciting area of electronics today. We may make fun of folks who walk around with smartphones seemingly permanently tethered to their ears, but we also have them to thank.

 

Register now for PCB West the Silicon Valley’s largest PCB industry trade show: pcbwest.com! Now with full-day electronics assembly tutorials!

 

So Long, Sola

I have to say, I didn’t think Jure Sola would or could last this long. The cofounder of Sanmina, Sola was one of the poster boys for wanton M&A excess, snatching up more than a dozen companies or OEM plants during the late 1990s and early 2000s. The spree culminated in the purchase of SCI Systems in mid 2001, a $6 billion deal that saddled the company with so much debt, when the ensuring tech collapse occurred, it was forced to take 20 straight quarters of “one-time” charges.

Most execs couldn’t have survived such a bloodletting. Sola wasn’t most execs, however. He continued to place his bets on fabricating in the US — in a memorable line, he told an IPC Printed Circuit Expo audience that “plating was in his blood” — and Sanmina remains the second (or third) largest board supplier in North America. Moreover, he correctly swung to the military and aerospace markets, eschewing the PCs that SCI was so dominant in.

Today the company is half the size in revenue of its peak, but consistently profitable.

Come October Sola will ride off into the sunset with his legacy intact, perhaps not the most beloved man to run a major PCB company, but a success nonetheless. In this era, that’s no small thing.

 

Jim Raby, RIP

I’m saddened to get the news this morning that Jim Raby has passed away. As longtime readers will know, Jim was one of my favorite persons, not just in the industry but in life. What a tremendous fighter he was for doing things right! I will always miss him. 

My sincere condolences to his wife Ellen, son David and everyone at STI on this sad day. We have lost a fine engineer, gentleman and human being.

Trolling NY

Apparently someone has decided to toy with New York state by assuming the role of “Foxconn US” and trolling a poor soul named Chris Souzzi, who works for Genesee County Economic Development Center.

I’m no fan of Foxconn, and I don’t think there’s a snowball’s chance in hell they put a plant in the Empire State, but stunts like these aren’t funny (even if that’s what’s intended) and simply go too far.

 

 

What’s So Difficult about Diodes?

A diode can be put on a a PCB in one of two ways. It’s only got two pins (usually — see, I already have a caveat). I’ve written about them a few times before. I’ve got a sampling of those posts here. But first,

Good marking:

 

 

 

 

Bad marking:

 

 

 

 

The diode schematic symbol is always a good choice. If there isn’t room for that, “A” for anode or “K” for cathode work well too. Why “K”, and not “C”, you may ask? Because “K” kan’t be konfused with a capacitor.

Okay. Enough ranting for now. Just use the diode schematic symbol, “A”, for anode, or “K”, for cathode; and always look at the data sheet for the exact part number.

Duane Benson
1 cricket per chip

http://blog.screamingcircuits.com

Rethinking the Supply Line

The PCB fabrication industry is older than most of us still working. It is overdue for modernization. We have not seen transformational manufacturing changes in the PCB bare board industry during the past 15 years.

What we have seen is the installed capacity moved to China. It has been reported that 60% of global board fabrication now comes from mainland China or Taiwan. This move created a forced shift in how boards are purchased, and consequently created new demands in communication and logistics. Specifically, language, time zone, and cultural considerations. Bigger companies with China-based feet on the ground could adapt easily; the rest of us had to learn new skills.

I am suggesting that the rest of us modernize and rethink our supply line strategy.

Some may remember the evolution of the electronics component industry. First, component manufacturers sold directly to OEMs. Gradually, customers and component manufacturers found that a better path was through a local distributor. Arrow, Avnet, Future, DigiKey, and many others were born out of this efficiency. Today, it is an exception to buy directly from a component manufacturer.

PCB fabrication is difficult for distributors because every board is custom. Repeat: every board is custom. Custom equals high potential for error, which equals close technical review required.

So, buyers must go to China directly and slog through the variety of China sources. With this come the multiple challenges of accountability, communication, logistics and culture. The most dangerous of the challenges is having picked a supplier that occasionally (or often) sends subpar boards and provides no recourse or no response to your complaint. Do you really want to commit such a critical part of your BoM to the lowest China bidder?

The modernization of the PCB industry is not in processing, but in supply chain. A new category of value-added distributor is evolving in the same way the component distributor evolved … to make things easier. We call it “Managed Manufacturing Services.”

Think of it as a value-added distributor of printed circuit boards. This concept can greatly improve the supply chain for both customer and China manufacturer, but only if they really add value.

What are the important values, and how does this approach add value?

Technical support. The value-added distributor must be your expert design reviewer, capable of counseling you and quickly fixing the errors.

Only technically trained PCB teams really understand the manufacturability challenges of bare boards. With the technology of new IC packages pushing toward smaller geometries, new thinking is required about designing for manufacturability. So, your value added distributor has to be technically trained to provide this service.

Communication. The value-added distributor must be capable of clearly and cleanly communicating with a factory in a different country.

We have been working with offshore factories for a long time. We learned through hard knocks that developing a strong relationship with your counterpart in Asia is critical. I call it “Pitcher-Catcher.” Whether a fastball or a curveball, the two communicate in one cohesive motion. This takes time to develop and not every factory gets it.

Time zones can work to your advantage. We pitch everything to China by 5 pm Pacific and have answers at 6 am the next day. Your distributor must know the factory requirements well enough that only a few questions (EQs) come back, lessening the need for middle of the night conference calls.

Accountability. Your value-added distributor must have carefully vetted and audited the factories they use. They must be US corporations with financial accountability to their customers.

Slogging through a variety of factory options is not a good idea. Jumping from one to the next based on price and email pressure is also not a good idea. It wastes time and invites disastrous quality issues. Customers with little or no knowledge of what makes a solid factory are at particular risk. Yet most customers fall into this category.

If you have someone on staff with experience in this area, you can send them to China to visit multiple factories, but unless this person has in-depth knowledge of what makes the difference between okay and fantastic at the granular level, it is waste of $10,000. It takes deeply experienced people to see the difference. It takes board manufacturing experience.

From the China manufacturer’s side, it is just like the component manufacturers of old. It is much more efficient to deal with a small handful of companies who service the US market than it is to staff and service everyone. The culturally smart ones are beginning to see this and actually do view us as distributors for them. It is a proven supply-chain solution.

Following the model of the component distributors, we can modernize this PCB industry. We can improve efficiency, quickly adopt new technologies, and capture lower costs all by modernizing the supply chain. Welcome the value-added PCB distributor, or as we call it Managed Manufacturing Services.

Thomas Smiley is president, Precision PCBs; [email protected].