Self-Driving Cars Decades Away Means More Electronics Will Be Needed

Folks,

Recent articles have added to the confusion regarding when fully autonomous vehicles will become common. One suggests that they around the corner with this quote:

“Alphabet plans to launch a self-driving service later this year, while GM Cruise has targeted the introduction of a similar service in 2019. Ford has that it expects to put self-driving vehicles into commercial service by 2021.”

So it sounds like autonomous vehicles will be here this year or next. But wait, here is a counter article. This article points out the many issues to be resolved before fully self-driving cars are launched. Consider this one quote from the article:

“There’s still a lot to be worked out. There are scenarios where the car will have to break the law in order to proceed. One common scenario is, you’re driving down a two-lane highway—one lane each way—and there’s a Fed Ex truck in front of you, parked on the curb. You can’t go around it without crossing the double-yellow line. Are you going to allow the car to break the law? Now, you’re getting into a whole different set of rules, regulations, and even morality decisions.”

These two perspectives were brought home to me recently when I was on a review board for a student projects course, Technology Assessment, taught by friend and colleague, Eric Bish. One of the projects was to assess the viability of bringing fully autonomous vehicles to market by 2021. Reviewing this project helped to clarify the dichotomy between the two perspectives discussed above.

It ends up that the efforts of Alphabet, Ford, and GM are to be launched in very controlled environments. They will only be used in well mapped out routes, with good lane markers, no construction, on days with good weather etc. Note also that the first quote refers to a self driving service, not private autos.

Having an autonomous vehicle that can completely replace a human is still (many?) decades away. There are just too many issues such as the FedEx scenario envisioned above that need to be resolved. I believe that over time, more and more such issues will be discovered and push the date of such vehicles even farther in the future.

Even if, on the whole, early autonomous vehicles are safer, accidents like the one in Phoenix earlier this year, will put a spotlight on autonomous vehicles that will further delay their full advent.

What does all of this portend for the electronics industry? I think these issues will require more electronics and sensors than many believe, so in a sense it is good news for the electronics industry.

Cheers,

Dr. Ron

January Issue Highlights

The January issue of of PRINTED CIRCUIT DESIGN & FAB and CIRCUITS ASSEMBLY is now available. Our cover story, from Skyworks, looks at
as-shipped vs. mounted height for BGA and LGA packages.

When a component is surface-mounted to the motherboard, the x- and y- dimensions do not change. Not so for the height. LGA height increases; BGA height decreases. A new study shows how an increase in as-shipped thickness can enable greater electrical performance and reduce quality risk.

This month’s other highlights include:

  • Understanding schematics
  • Using Maxwell’s equations to solve transmission line problems
  • Determining Df and Dk tradeoffs among various laminates
  • Bare board x-ray inspection
  • Busting the myth of PCB design at the college level
  • A profile of EMS firm Green Circuits
  • Ten steps for achieving good DfX
  • The latest happenings among the IPC Designers Council chapters
  • And Peter Bigelow asks if smaller manufacturers outmaneuvering the big ones.

Check it all out here.

Jabil on Tariffs

Jabil chief executive Mark Mondello said what we’ve all been thinking about the US-China trade tariffs.

On a conference call with analysts, Mondello called the issue “a big deal.” He underscored how Jabil could benefit if customers start to move manufacturing from China, as the EMS is well-positioned with factories all over Southeastern Asia, including Malaysia, Vietnam, Singapore and Taiwan — not to mention Mexico and Eastern Europe. And he broke down the potential impacts:

  1. “If the tariff and trade issues get resolved, that’s great.”
  2. “If the trade and tariff issues create some choppy seas and a storm here and there, that’s really good for (Jabil), because … there’s nobody that has our scale that can move product around with the agility and the flexibility that we can and, in fact, we do that all the time.”
  3. “If the trade tariff issues become some nasty hurricane, it’s going to be bad for all.”

Indeed.

Steve Jobs’ Biggest Legacy?

The decision of Foxconn to enter the semiconductor manufacturing market gives additional heft to the premise that the US created a monster determined to swallow everything in its path.

As reported by Nikkei Asian Business today, Foxconn is working on a potential joint venture with its Sharp subsidiary to “invest” as much as $9 billion in the new plant, which would be the company’s first foray into IC development. (We put “invest” in quotes, because 1. the gulf between Foxconn’s reported investments and its actual investments tends to be oceanic in size and 2. in this case, the investment is reportedly coming from the Chinese government.)

Foxconn already is likely the world’s largest consumer of chips, so getting into the OEM business would cause reverberations among its major suppliers. Moreover, it returns us to the sad refrain: What is Foxconn’s end-game? The company dominates the electronics supply chain from boards to assemblies to box build, makes other components (connectors, displays, motherboards, etc.),
operates retail stores, invests in 5G … you name it.

Personally, I blame Steve Jobs. The iPhone was a revelation, for which Jobs deserves every ounce of credit he has received. But in looking for assemblers, he could and should have looked further than Foxconn. There simply is no major company in the electronics industry today that is more aggressive and yet has a worse record of worker treatment than Foxconn. I’ve worked in the industry since 1991. Foxconn remains the only company that I’ve ever received direct complaints from its employees about their treatment. (And that came from US workers. I can only imagine what their Chinese counterparts might say.)

And yes, I realize it was Michael Dell, not Jobs, who gave Foxconn and Terry Gou its entry into the US computer industry. But it was Apple that gave Foxconn its biggest stage, boosting the Taiwanese company from a third-party motherboard maker to a partner in the most revolutionary electronics device the world had seen to that point.

When criticized for his reliance on Foxconn, Jobs would fire back that the US didn’t have the engineers to build what Foxconn could build. But I don’t think it was an issue of talent, or availability. I think it was an issue of greed. Jobs couldn’t acquire the volume of talent needed at the price he wanted. Foxconn could.

And so that’s Steve Jobs legacy. Foxconn is a $150 billion company and growing. Its revenues are larger than any of its customers. And, being traded on the Taiwan Exchange, it has access to financial markets without the transparency of public companies in the US or Europe. A monster is present among us, and will eventually devour us all.

Patty and the Professor Flashback: Uptime Part 4

Folks, the adventures of The Professor continue … 

So far the meeting with The Professor had proven very valuable, John thought. He was anxious to hear the other suggestions that The Professor had. The Professor began to speak. 

“Changeovers are what really hurts ACME’s uptime and, hence, productivity,” The Professor commented.

Pete was surprised. “Even you were impressed with our system of having a white board to document the logistics’ status for each future job,” said Pete.

“You are correct,” responded The Professor. “However, a changeover takes you about 2-3 hours and you have one or two changeovers per line per day,” The Professor added.

 “We have a high product mix business. It’s what we do,” said John.

“The good news is that you can cut your changeover time to 30 minutes,” shared The Professor.

“How?”  asked John increduously.

 “By using feeder racks,” explained The Professor. “These racks allow you to set up the component reels for the next job while the current job is running. Admittedly they cost about $30,000, but they will pay for themselves in weeks. Right now you lose more than two hours per changeover loading the feeders onto the component placement machines. With the feeder racks, you just roll them and lock them in place,” said The Professor.

Pete moaned, “We already have feeder racks. We only used them once, because they stick on the carpet when we move them.”

This comment caused The Professor to groan internally, but he hid it well. He had noticed the frayed carpet near the component placement machines.

John was beside himself. “It’s a good thing we are not The Professor’s students……I don’t think we would be heading for an A,” he thought. John responded to Pete’s comment, “Pete, let’s get facilities to remove that rug and start using  the feeder racks ASAP.”

Patty listened to all of this with comical fascination. She had harassed Pete about using the feeder racks several times. While the meeting was going on she drew a sketch of The Professor, who is notoriously camera shy. Oh, and she decided on the restaurant, Aujourd’hui in nearby Boston. Maybe they can pick up a Red Sox game while they’re there.

Epilogue: Six months later ACME’s uptime was a respectable 30.4%. John never had to buy another line. The improved productivity enabled ACME to increase their market share.  Patty’s dinner and ball game were a complete success. She handled her victory modestly and she and Pete became best friends. Pete also joined the ranks of The Professor’s many admirers.

Dr. Ron’s note: I know that a story like this must seems too comical to be true. Every point and the associated uptime numbers, lost time etc, are all based on a real situation with no exaggeration. The Epilogue, however, is ficticious, as is the Patty/Pete friendly (?) conflict. The names have been changed to protect the innocent (guilty?).

What is your uptime??

Cheers,

Dr. Ron

Going Mobile

As those who view our websites on their phones know, we have rolled out new mobile versions of circuitsassembly.com and pcdandf.com.

The new versions are optimized for smartphones and tablets, and are designed to present news, press releases and, of course, our technical content in a much more user-friendly way. As always, we’d love your feedback.

Meng’s Rollup

The arrest and possible extradition of a high-rankling Huawei official should be of concern to anyone doing business abroad. It is bound to have a domino effect as other nations line up to wreak havoc on strategic competitors to their respective domestically based corporations.

Or will it? This has been standard operating procedure for China for years. Whereas Moscow specializes in kidnappings for ransom, that’s Finance 101 compared with the Bear’s doctoral dissertation. China’s motive is longer in range — and the detainment longer in duration. What prevents many countries from acting in such rash fashion is the inevitable broadside to their reputation. China doesn’t mind the public relations hit, provided its broader objectives are met. And that objective is complete control over its economy and security. To the Chinese government, gulags are a feature, not a bug.

Canada rolled up Meng Wanzhou at the request of the US government, which cited an unsealed indictment against the Huawei CFO. It is widely believed Huawei is a front for the Chinese government, in part because its founder (Meng’s father) is a former Chinese intelligence office. Huawei denies the charges, but the US knows of what it accuses: In 1999, no less an entity than the Taliban had approved a plan for Afghan Wireless Communications — essentially a front for the American government — to build out the phone and Internet system in Afghanistan. If not for infighting in the US government, America could have had the entire country tapped.

When contemplating these latest events, consider these issues:

  1. The US has not yet indicated why it wants Meng. (The early buzz is the company is shipping illicit gear to Iran, in violation of international sanctions.) What happens the next time an adversary decides to nab an American? Who has the moral high ground? Do we trust the government — any government — enough to take it at its word? Or is Meng a pawn in a bigger, as-yet to be disclosed play?
  2. What will be the cost to US businesses that do (or want to do) business in China?
  3. How far is the US willing to go in terms of disclosing what it knows about Huawei’s operations? Sometimes it’s more useful to allow the behavior to continue in order to monitor it surreptitiously. Also, alerting others could give them a leg up on determining where their vulnerabilities lie, and lead them to close those gaps.
  4. There’s a trade war ongoing between the US and China (really), causing several major electronics ODMs to consider relocating factories from both nations, not to mention higher costs to consumers. Some, like Foxconn chairman Terry Gou, think the effects will last for years. Will Meng’s arrest lead to further economic isolation and barriers among the world’s two largest economies?

What is a Centroid File?

Call it what you may, but surface mount assembly robots need a magic file to determine where to place your components and how to orient them. We call it a centroid. What is a centroid file and why is it important to your PCB assembler?

Many assemblers use automated equipment to place surface mount components on PCBs. One of the tools we use to rapidly program these machines is the centroid file (aka insertion, pick-and-place or XY file).

Some CAD packages automatically generate this file, some will not. Sometimes you may simply need to modify the file, and some assemblers can make minor changes to the file or create it for you for a small fee.

Ultimately, the centroid file describes the position and orientation of all surface mount components on the PCB. A centroid file includes: the reference designator, X and Y position, rotation and the side of board (top or bottom). Only SMT parts should be listed in the centroid file the basic format for the centroid file is a comma delimited (.csv) file with data in the following order: RefDes, Layer, LocationX, LocationY, Rotation.

Here’s a breakdown of the data:

RefDes
The reference designator that matches your BOM and PCB markation.

Layer
Either the word “top” or “bottom.” This is not necessarily the CAD layer designator. Just “top” for a part located on the top of the board and “bottom” for parts on the bottom side of the board. Top is often referred to as the component side and bottom the solder side by assemblers and fabricators.

Location
The “LocationX” and “LocationY” values describe the part’s offset from the board origin. The location values require that the part origin be centered in the part. The board XY origin of 0,0 is in the lower left corner of the board. The 0,0 origin for the bottom of the board is in the lower left corner, looking at the top of the board, though the board. Preferred units are in inches (0.0000″).

Rotation
Rotation goes counterclockwise for all parts on top and clockwise for parts on the bottom. In both cases, this is from the perspective of looking at the top of the board. For bottom side parts, it is looking through the board, still from the perspective of looking at the top of the board.

LED & Diode Markation Guidelines for PCBs

Have you ever had an LED or other diode placed backwards? PCB assemblers work hard to place every component from the largest, highest pin-count logic chip down to the smallest passive components and micro wafer-scale BGAs correctly every single time. A key element of that accuracy is our understanding of your board and the component markings.

If you use surface mount diodes or LEDs, you probably understand the challenges involved in correctly and consistently indicating diode polarity. LEDs are usually cathode negative, while zeners and uni-directional TVS diodes can be cathode positive. Barrier diodes can be either orientation. It all depends on whether the diode is a rectifier, an LED, a uni-directional TVS, part of a daisy-chain and a host of other considerations.

When you start looking at the CAD libraries, you not only have all the differences from that manufacturer, you may also have different markation schemes from each CAD package developer and from each library builder.

Guidelines for diode polarity mark silk-screening — the diode symbol, “K” for cathode or “A” for anode. To ensure the best accuracy, we recommend extra care in marking diodes to remove any ambiguity.

The preferred method is to place the diode schematic symbol in the silkscreen. You may also place a “K” for cathode adjacent to the cathode. “K” is used because “C” could imply that the spot wants a capacitor. An “A” adjacent to the anode on the board works too, though it’s less common. If you are producing a board without silkscreen, put the mark in the copper layer or submit a clear assembly drawing with the other board files.

Relying on +, – or _ are not definitive in what they indicate and are not recommended. For example, a “+” or “-“ sign isn’t good enough, because it’s not always true that current flows through a diode from the anode to the cathode. For the common barrier diode or rectifier, it’s a pretty safe bet. However, with a zener diode or TVS, it’s not necessarily true. That is why marking a diode on your PCB with the plus sign (+) is not good practice.

Has the Economic Tide Turned?

2018 experienced a year of pump priming unlike any other during an economic growth period in our lifetimes. The US tax bill made significant revisions to the tax code, slashing taxes for (higher-income) individuals and corporations. The corporate rate alone was cut 14 percentage points, to 21%.

Moreover, taxes on profits held by US companies abroad were cut by 20 percentage points or more. That facilitated the repatriation of those cash reserves — estimated by Bank of America at $3.5 trillion, or more than 1/5th the size of the annual US GDP.

As those gains worked their way through the system, the effects included corporate buying sprees that topped anything we’d seen in at least a decade. Business capital investment budgets swelled, and suppliers’ bottom lines ballooned.

The bloom is off the rose, I’m afraid. While not a free fall, the economic reality today is that buyers are cooling off and budgets are returning to more conservative positions. Several EMS firms are guiding for slowing business conditions, and now fabricators are reporting the same. End-markets like automotive are leveling, which will have a ripple effect across the entire supply-chain.

No one likes a cynic, especially so close to the holiday season. But my advice is to go easy on the parties while aggressively going after market share. A large customer base is the best hedge against a slowing economy.