A Few Questions on Bismuth

Folks,

A few people asked some questions after a post on bismuth solders. Here they are:

1. The low melting point of these solders is encouraging. What are realistic field use conditions?

Bismuth solders tend to be brittle, so drop shock environments such as mobile phones would not be recommended. However, thermal cycle performance from 0 to 100C is good, so stationary office equipment, televisions, desktop computers, etc., may be good candidates.

2. I am working with your colleagues on an automotive application and I am curious whether you have any idea how this alloy will perform between -40 and 0°C? We have not been reviewing bismuth-containing alloys due to their lower sheer strength, but may need to look at them in the future.

We can find no information on thermal cycle performance at these low temperatures.

3. I hear that bismuth is rarer than silver. If we start using bismuth in solders, couldn’t that make it very expensive.

An old number from Prismark puts the world solder use at about 50,000 metric tons (MT) per year.  Assume bismuth solders took a 5% market share (I think this would be the highest) that is 2,500 MT of bismuth solder (Bi57Sn42Ag1) or 1,425 MT of bismuth.

Although bismuth’s occurrence in the earth’s crust is 0.009 ppm (silver is 0.075 and gold 0.004 ppm), about 22,000 MT are produced each year.  In comparison, about 2,000 MT of gold, 20,000 MT of silver, 400 MT of indium and 5 MT of rhodium are produced each year.  In comparison to more common metals, total lead production is 8,000,000 MT/year and tin a little less than 700,000 MT.

Realistically, it would seem to me to be unlikely that use of bismuth in solder, at 1,425MT/year out of 22,000 MTs,  would affect the price much, especially if the adaptation rate is more like 1-3%, instead of 5%.

For those interested in how bismuth is produced, this Wikipedia quote may be of interest:

According to the United States Geological Survey, world 2009 mine production of bismuth was 7,300 tonnes, with the major contributions from China (4,500 tonnes), Mexico (1,200 tonnes) and Peru (960 tonnes).[11] World 2008 bismuth refinery production was 15,000 tonnes, of which China produced 78%, Mexico 8% and Belgium 5%.[9]

The difference between world bismuth mine production and refinery production reflects bismuth’s status as a byproduct metal. Bismuth travels in crude lead bullion (which can contain up to 10% bismuth) through several stages of refining, until it is removed by the Kroll-Betterton process or the Betts process. The Kroll-Betterton process uses a pyrometallurgical separation from molten lead of calcium-magnesium-bismuth drosses containing associated metals (silver, gold, zinc, some lead, copper, tellurium, and arsenic), which are removed by various fluxes and treatments to give high-purity bismuth metal (over 99% Bi). The Betts process takes cast anodes of lead bullion and electrolyzes them in a lead fluorosilicate-hydrofluorosilicic acid electrolyte to yield a pure lead cathode and an anode slime containing bismuth. Bismuth will behave similarly with another of its major metals, copper. Thus world bismuth production from refineries is a more complete and reliable statistic.

So I don’t think bismuth supply and price would be affected by its use in solders.

Cheers,

Dr. Ron

By and Bi

Folks,

When the industry was preparing to transition to lead-free solders almost ten years ago (can it have been that long), tin-bismuth solders were serious candidates. Their low melting point, of about 138C, made these solders interesting candidates to replace tin-lead solder. However, if contaminated with lead, tin-bismuth solders can produce a eutectic phase that melts at 96C. In such situations the resulting solder joint exhibits poor performance in thermal cycle testing. Since early in the transition to lead-free solders it was expected that there would be numerous components and PWBs with lead-based surface finishes, this property made tin-bismuth solders unacceptable.

Another aspect of tin-bismuth solders is that they expand on cooling. This phenomenon can result in fillet lift in through-hole solder joints.

However, as we are now well into 2011, almost no components or PWBs have lead-containing finishes and many portable electronic devices have no through-hole components, so it may be time to reconsider tin-bismuth for some applications.

Some years ago, Hewlett Packard (HP) had performed work to show that adding 1% silver to tin-bismuth solder enabled this alloy to outperform eutectic tin-lead solder in 0 to 100C thermal cycle testing. Even at these low reflow temperatures, HP demonstrated solder joint strength with SAC BGA solder balls that was 65% that of tin-lead solder. Expanding on this work, Indium’s Ed Briggs and Brook Sandy performed stencil printing and reflow experiments consistent with the requirements of current miniaturized components using this 57Bi-42Sn-1Ag solder. All their results were promising. Ed presented a paper at SMTA Toronto that summarized the Hewlett Packard work and reviewed the results of this new work.

Bismuth solders tend to be brittle, so applications experiencing drop shock should be avoided.

So for applications consistent with 0-100C thermal cycling, 57Bi-42Sn-1Ag solder may be something to consider if the high temperature of SAC solder paste is an issue to components or PWBs in a product.

Cheers,

Dr. Ron

On Pb-Free Reliability and its Doubters

I was at SMTAI (Surface Mount Technology Association International) in late September. As mentioned, I chaired a session on Alternative Alloys. At this session, Greg Henshall presented a paper on the Low Silver BGA Sphere Metallurgy Project. This paper was a collaborative effort of six companies. In addition, Richard Coyle presented an overview of the work of three companies titled “The Effect of Silver Content on the Solder Joint Reliability of a Pb-free PBGA Package.” Both projects evaluated lead-free thermal cycle reliability as a function of silver content and compared the results to SnPb reliability.

Both papers concluded that as far as thermal cycle reliability is concerned

SnPb < SAC105 < SAC305 < SAC405

Coyle’s paper summed it best:

Each of the SAC alloys outperformed the SnPb eutectic alloy in every test, including the long, 60 min. dwell time test. This tends to diminish the argument that SAC is less reliable than SnPb. (See Coyle’s figure. Data curves to the right are more reliable.)

Henshall’s paper also showed that the addition of dopants, to improve shock resistance, in SAC105 does not reduce thermal cycle life.

So, it appears, at this time, that, from a thermal cycle and drop shock perspective, it is looking more and more like SAC-based solders out perform SnPb solders in these two reliability arenas.

At the end of the session a noted lead-free curmudgeon came over to introduce himself.  We have had a jovial disagreement on several blogs, etc., in the past re: lead-free status and issues, but had not met in person. I should mention that this person is a college graduate, a former technical leader at several influential technological companies, and he owns a PE license. I asked him what he now thought about lead-free reliability after hearing the talks. He claimed that he is a little less likely to think that Pbfree reliability is a disaster. He still refuses to purchase lead-free products. He buys old units (pre-2006) on eBay.

I mentioned that over $2 trillion of electronics has been placed in the field since 2006 with no unusual reliability issues. I then went on to say that a RoHS-compliant product is much more likely to fail due to a non-RoHS related issue. He did not disagree. So then I asked him why he won’t use RoHS compliant electronics. His answer: “I just don’t trust them.”

Cheers,

Dr. Ron