Square vs. Circular Apertures and the Five Ball Rule Revisited

Folks,

I recently posted that circular apertures deliver much less solder paste than square apertures. One of the obvious reasons is that a circle of diameter D has only 78.5% of the area of a square of side D. However, in addition, the circular aperture has poorer release than a square aperture. In the aforementioned post, I theorized that the reason for the poorer release is that the curved surface of the circular aperture adheres to the solder paste solder balls more effectively.

I recently thought of the above situation in light of the “Five Ball Rule.” This rule states that the solder paste’s largest solder particle diameter should be such that at least five of these particle diameters would span the width of a rectangular stencil aperture.

See Figure 1 for the Five Ball Rule applied to circular and square apertures. Note that the ratio of solder balls is 19/25 = 76%, almost the theoretical maximum ratio. However, for square and circular apertures, the ‘Eight Ball Rule” is suggested. But, in some configurations the Eight Ball Rule may result in less solder paste — 40/60 = 62.5% (Figure 2). It should be remembered that this is just a surface area argument, not a volume argument. Solder paste is printed in volume and in this discussion we are just looking at one layer of paste.

Figure 1. Circular apertures provide only 76% of the solder paste that square apertures do using the Five Ball Rule.
Figure 2.  Circular apertures provide only 62.5% of the solder paste that square apertures do using the Eight Ball Rule.

However, the bottom line is that square apertures should be preferred over circular apertures.

Cheers,

Dr. Ron


Excel Software Tool to Determine Mass Fractions in Binary Alloy

Folks,

Recently, I posted a derivation of the equations to determine the mass fractions of two metals in a binary alloy. I thought it may be helpful to develop an Excel software tool to perform these calculations.

To use the tool, you enter the densities of the two metals and the density of the alloy in the blue cells as seen in Figure 1 below. The calculated mass fraction of each metal is shown in the gray cells.

Figure 1. The data entry for the mass fraction calculator. The densities are entered into the blue cells and the mass fractions are calculated and shown in the gray cells. 

As an example, let’s assume you purchase some 14 karat gold. Unfortunately, to your eye it looks more like 10 karat gold, so you want to check it out. As a reminder, when gold is expressed in karats, the alloying metal is copper. First you need to measure the density of the gold alloy. An easy way to do this is the wet gold technique as discussed in a past blog post. From using this technique, you determine that the density of the alloy is 11.53 g/cc. The density of gold is 19.3 g/cc and that of copper is 8.96 g/cc. You will recall that 14 karat gold is (14/24) gold or a mass fraction of 0.5833.

The weight fraction of gold is shown to be 0.4167 or 10/24, as shown in Figure 1, indicating that the gold is 10 karat, not 14 karat.

Time to complain to the seller!

Cheers,

Dr. Ron

New Excel Software Tools to Practice for SMTA Certification #2: Reflow Profiling

Folks,

In my last post, I shared about an Excelbased software tool called Line Balancer to help candidates for SMTA Certification prepare for the line balancing part of the program. They can use Line Balancer to check the correctness of practice line balancing problems. This post will discuss another Excel-based software tool, Reflow Profiler, to help candidates prep for the reflow profiling part of the certification.

Typically, the reflow profiling goal is to determine if the reflow profile matches the requirements of the solder paste specification.

As an example, let’s consider a reflow profile as shown in Figure 1. The solder paste specification is shown in Figure 2. We will first solve the problem by hand and then use the software.

Figure 1. A ramp-to-peak reflow profile.
Figure 2. The solder paste reflow specification

The first task is to determine if the ramp-to-peak rate matches the solder paste specification outlined in red in the specification shown in Figure 3. By measuring the change in temperature in Figure 4 from point A to B and dividing it by the change in time from those points, we see in Figure 4 that the ramp-to peak-rate is 0.857°C/sec., and is within the recommended specifications 0.5 to 1.0°C/sec.

Figure 3. The solder paste specification with the ramp-to-peak rate highlighted.
Figure 4. The reflow profile with the ramp-to-peak rate calculated.

Figure 5 shows the solder paste specification with the time above liquidus (TAL) with the peak temperature highlighted. While Figure 6 shows the reflow profile, where the TAL is measured as 60 seconds and the peak temperature at 240°C, both are consistent with the recommended values.

Figure 5. The solder paste specification with the TAL and peak temperature highlighted.
Figure 6. The reflow profile with the TAL and peak temperature identified.

Lastly, Figure 7 shows the solder paste specification with the cooling ramp rate highlighted and Figure 8 shows the reflow profile with the cooling rate calculated as -2.8°C/s, again within the specification.

Figure 7. The solder paste specification with the cooling rate highlighted.
Figure 8. The reflow profile with the cooling rate calculated.
Figure 9 shows all of the calculations performed and matched to the specification with Reflow Profiler.

If you are interested in a copy of Reflow Profiler send me an email at [email protected].

Cheers,
Dr. Ron

SMT Assembly is an Optimization Process

Folks,

SMT assembly is an optimization process. There is no single stencil printing process for all PWB designs. The stencil printing parameters of stencil design, squeegee speed, snap off speed, stencil wipe frequency, and solder paste for assembling all PWBs will not be the same; just as there is no single reflow oven profile for all PWBs. Fortunately, most solder paste specifications give good boundaries for all of these parameters, but typically some trial and error experiments will be needed when assembling a new PWB design that is not similar to past assemblies.

The need for optimization is most obvious when trying to minimize defects. As an example, minimizing graping is often facilitated by using a ramp to peak reflow profile. However, the ramp to peak profile may acerbate voiding. See Figure 1.

Figure 1. The ramp to peak reflow profile may minimize graping, but acerbate voiding.

Figure 1. The ramp to peak reflow profile may minimize graping, but acerbate voiding.

Thankfully your SMT soldering materials and equipment suppliers deal with these optimization issues on a daily basis. So if you are ever stuck with some challenging SMT assembly process, contact these solder materials and equipment experts first.

Cheers,

Dr. Ron

The Miracle of Soldering

Folks,

Imagine you are Guglielmo Marconi, and you opened the first radio factory in Chelmsford England in 1912. Using Lee De Forest’s 1906 invention, the triode vacuum tube, your early radios needed a way to connect the various electronic components together. Enter soldering. Soldering is the most cost effective and reliable, some might say only, way to connect electronic components together. It has been since the birth of electronics with the radio.

It is interesting to ponder some of the effects that the radio had on civilization and society. Before the radio, most of the United States was disconnected. People in California didn’t know what was happening in New York in anything like real time. There was also no national entertainment. Following early broadcasts in the 1920s, radio was a staple of most American homes by the 1930s. Families would gather around the radio after dinner to listen to the news and comedy, drama, music, etc. This golden age of radio lasted from the 1920s through the 1950s until radio was supplanted by television. See Figure 1.

Figure 1. A young girl listens to the radio in the 1930s. It would be difficult to overstate the impact of radio…all enabled by soldering.

Electronic soldering, in a sense, is a miracle of technology. It enables connecting copper to copper at a temperature of less than 230°C. The connection is reversible, conducts electricity well, and is mechanically strong. This soldering temperature is crucial for electronics, as the printed wiring boards and component packages contain polymer materials that cannot withstand temperatures much higher than 230°C. This low soldering temperature is especially impressive when considering that to bond copper to copper without solder would require temperatures near that of the melting point of copper or 1085°C.

To work its magic, solder forms intermetallics with copper. See Figure 2. The intermetallic closest to the copper is rich in Cu3Sn, and that closest to the solder is rich in Cu6Sn5.

Figure 2. A schematic cross section of a component lead soldered to a PWB pad. 

It is important that the soldering bond is reworkable. The electronics industry would have difficulty being profitable without this important feature of soldering as most assembly processes have some yield loss that requires rework.

So, the next time you use your smartphone, PC, or TV, remember it wouldn’t be possible without the miracle of soldering.

Cheers,

Dr. Ron

Figure 1 source: By Franklin D. Roosevelt Library Public Domain Photographs – This media is available in the holdings of the National Archives and Records Administration, cataloged under the National Archives Identifier (NAID) 195876., Public Domain, https://commons.wikimedia.org/w/index.php?curid=2151524


Selecting Reflow Oven Length

Folks,

You are putting in a new assembly line to assemble some large boards for which your company just received a three-year contract. The boards are 45cm long and you expect the cycle time from the component placement machines to be 40 seconds per board. Your boss is pressuring you to get another 5-zone oven, as they are cheaper and take up much less space than a 7- or 10-zone oven. But, you are concerned that a 5-zone oven may not have the capacity that is needed to keep up with the component placement machines. Let’s make some calculations and see if your concerns are justified.

Table 1 shows some typical reflow oven metrics:

Let’s assume that you will be using a typical modern SAC solder paste. By studying the reflow profile above, we see that the amount of time needed in the heated zone is about 4.5 min. or 270 sec.

So if we choose the 5-zone oven the belt speed will be:

Belt Speed = BS= Heat Tunnel Length/Time in Heated Tunnel = HTL/Time = 180 cm/270 sec. or 0.66 cm/sec

The component placers will be presenting a 45cm board every 40 sec., so the belt speed needs to be:

BS = Board Length/Cycle Time = BL/CT = 45cm/40 sec = 1.125cm/sec

So clearly a 5-zone oven won’t work. What about a 7-zone oven? Let’s calculate the belt speed for this oven.

BS = HTL/Time = 250cm/270 sec. or 0.926cm/sec

Now we can see that the 7-zone oven won’t do the job either.

How about the 10-zone oven? Let’s see if the belt speed is greater than the 1.125 cm/sec needed.

BS = HTL/Time = 360cm/270 sec. or 1.33cm/sec

Success! Since 1.33cm/sec is greater than 1.1125cm/sec, this 10-zone oven will work. The extra belt speed will permit a small amount of spacing between the boards. Let’s calculate what it will be:

BS = (BL + Spacing)/CT = 1.33cm/sec => BL+ Spacing = BS x CT => Spacing = BS x CT – BL

Spacing = 1.33cm/sec. x 40 sec – 45cm = 53.2cm – 45cm = 8.2cm

To summarize: For our 45cm board that has a cycle time of 40 sec., we need a 10-zone oven with a heated tunnel length of 360cm. There will be an 8.32cm spacing between the boards in the oven.

If you would like an Excel spreadsheet to make these calculations send me an email at [email protected].

Cheers,

Dr. Ron

Soldering 101: II: The Miracle of Soldering

Folks,

Pity Ötzi, The Iceman, circa 3500 BC. It is believed that he was involved in copper smelting as both copper particles and arsenic, a trace element in some copper ores, were found in his hair. Not only was he being slowly poisoned by the arsenic, but to smelt the copper he had to achieve a wood fire temperature of about 1085ºC (1985ºF), as discussed in my last post. The arsenic in the copper did have a benefit, as it gave the copper a little more strength than if it were pure.

Shortly after Otzi’s time, metal workers discovered that adding 10% tin to the copper produced bronze. Bronze is not only markedly harder than copper, but it melts at almost 100ºC lower than pure copper, making metal working much easier. The Bronze Age had begun. This period coincided with what scholars would recognize as the beginning of modern civilizations, such as those in Egypt and Greece.

Since it melts at a lower temperature, bronze also fills molds better. This improved mold filling is evident in Figure 1. This photo shows a copper and bronze hatchet that I had made. The copper hatchet on the left shows evidence of poor mold filling.

Figure 1. Copper, on the left, and bronze hatchets that were made for Dr. Ron’s Dartmouth College course ENGS 3: Materials: The Substance of Civilization. Note that the copper hatchet shows poor mold filling due to copper’s higher melting temperature..

In my opinion, it is almost certain that the Bronze Age is related to the development of soldering. The first evidence of soldering was about 3000º BC where, arguably the first civilization, the Sumerians assembled their swords with high temperature solders. Since the base metal for most copper-to-copper soldering is tin, the early metal workers almost certainly learned that tin could be used to join copper or bronze pieces together at much lower temperatures than smelting.

Until the European Union’s restrictions on lead in solders in 2006, most electronics solders were tin-lead eutectic. Eutectic is a Greek word that roughly translates into “easy melting.” Figure 2 shows the tin-lead phase diagram. Note that the melting point of tin is 232ºC and that of lead is 327ºC, yet at the eutectic concentration of 63% tin/37% lead, the melting temperature drops to 183ºC. This concentration and temperature is known as the eutectic point.

Figure 2. The tin-lead phase diagram. Note the eutectic point at 183ºC.

After the EU’s lead restriction went into effect, most electronics solders are based on a tin-silver-copper alloy that melts in the 217-225ºC range. The most common of these alloys being SAC305 (Sn96.5Ag3.0Cu0.5, where the numbers are weight percentages.)

Although the eutectic point is an interesting and usually beneficial phenomenon due to its lower melting point, the true miracle of soldering is that two pieces of copper that melt at 1085ºC can be bonded together with a tin-based solder at less than 232ºC. The value of this benefit cannot be overstated. Nature has allowed us to mechanically and electrically bond two pieces of copper together at a low enough temperature that we can do this bonding in the presence of electrically insulating polymer materials. Without this feature of solder, we would not have the electronics industry! An added benefit is that the bonding is reworkable, so that if a component fails, it can be replaced without scrapping the entire electronics printed circuit board.

It is natural to ask how this bonding takes place. The tin in the solder forms intermetallics with the copper. Typically Cu6Sn5 forms near the tin and Cu3Sn forms near the copper (Figure 3).

Figure 3. Copper tin intermetallics from Roubaud et al, “Impact of IM Growth on the Mech. Strength of Pb-Free Assemblies,” APEX 2001.

So next time you use your smartphone, laptop, tablet, or other electronics device, don’t forget that without the miracle of soldering it wouldn’t exist.

Cheers,

Dr. Ron

Soldering 101: The First Copper Smelting

Folks,

Soldering is an ancient technology. It is estimated that soldering was first discovered as long ago as 4000 BC. So soldering was much more ancient to Julius Caesar  (100 BC – 44 BC) than Caesar is to us today. Before considering soldering, let’s discuss early copper smelting, as copper is usually the metal soldered to.

My Cornell colleague Steve Sass wrote a book, Materials: The Substance of Civilization, on which I based my course of the same name on. In his book, Sass points out that the importance of the firing of clay can’t be overstated as it is the first time humankind changed the nature of a material. Once clay is fired it forms ceramic, a material much stronger than dried clay. Artisans first performed this feat about 26,000 years ago in what is now the Czech Republic.

While I agree with Sass’s assessment, it could also be argued that the beginning of modern technology can be traced back to the first smelting of copper. The firing of clay is too simple a process to encourage much further experimentation, which is needed for technology growth. The process of smelting of copper, the first metal liberated from its ore, is quite complex and this complexity led to further experimentation that gave us iron and steel. Continued working with metals likely developed the scientific method, hence led up to all of the breakthroughs to this day.

Consider the novelty of the first smelting of copper. To smelt copper, our ancestors had to grind copper ore, malachite (Figure 1), into a powder, mix it with carbon, and heat it to greater than 1085ºC (1985ºF). By the way, you can estimate the Fahrenheit temperature by multiplying the Celsius temperature by a factor of two and will only be off by <10% from 100º-1700ºC.

Figure 1. Malachite (copper ore) is quite attractive. Perhaps this attractiveness brought it to our ancient ancestors’ attention as a candidate for smelting. (Copyright 2018, Ronald C. Lasky, Indium Corp.)

 

After I cook on my outdoor grill, I clean the grates by turning the propane to maximum to cook off the grease. Typically the grill’s thermometer will read about 600ºF during this process. The grill gives off so much heat that it is oppressive to approach it to turn it off. Needless to say, noting what 600ºF feels like suggested to me that it is very hard to achieve 1985ºF with a wood or charcoal fire.

Anyway, I recruited some graduate students to try and smelt copper as described above. They purchased many bags of charcoal, used a leaf blower to supply air and worked for two hours on two different attempts and failed both times. The next year some students built a tower with vents and put charcoal on the bottom with the copper ore and carbon in a crucible on top. Their tower was similar to a roman smelting furnace for iron (Figure 2). They were successful and produced a piece if copper about the size of a penny.

Figure 2. A Roman style furnace. Dr. Ron’s students built a similar tower from cinderblocks.

These two attempts demonstrate how amazing our distant ancestors were. How did they think to do it? There were certainly many failed attempts. How did they persevere? One thing is certain, they started the trend of discovery, in about 5000 BC, that led us to today. We owe them much.

Cheers,

Dr. Ron

 

 

Intermetallics and Kirkendall Voids Continue to Grow at Room Temperature

Folks,

In my last post, I discussed intermetallic compounds (IMCs) and what I referred to as the “miracle of soldering.” I also mentioned that research focused on the brittle nature of IMCs suggests that failures in stress tests are more likely due to failures between the interfaces of the IMCs and the solder, the IMCs and the copper, or the IMCs (Cu6Sn5 with Cu3Sn) themselves and are not related to any perceived brittle nature of the IMCs.

Another weakening mechanism in soldering and thermal aging of solder joints is Kirkendall voids. Kirkendall voids form when one metal diffuses more rapidly into another metal than vice versa. A copper-tin interface displays such a mechanism. Copper diffuses into the tin more rapidly than the tin into the copper. This mechanism can result in actual voids in the copper at the metal interface. See the image below. In addition to causing a possible weakness at the interface, the excess copper that diffuses into the tin creates compressive stresses than can result in tin whiskers.

Kirkendall voids

(Source: http://www.jfe-tec.co.jp/en/electronic-component/case/img/case_solder_02.png)

IMCs and Kirkendall voids are formed quite quickly at soldering temperatures. However, even at room temperature IMCs and Kirkendall voids continue to grow, albeit at a much reduced rate. The reason for this continued growth is that on the absolute temperature or Kelvin scale, room temperature is a considerable fraction of the melting temperature of solders. As an example, the melting temperature of SAC is about 219°C, this temperature is equal to 492K (219+273), whereas room temperature is 295°K, so room temperature is 60% of the way to the melting point of SAC solder (295/492 = 0.60). Compare this situation to steel, which melts at about 1480°C. The steel would be red hot at 60% (780°C) of its melting point on the absolute scale. So, since room temperature is 60% of the way to melting, the IMC and Kirkendall forming processes don’t stop at room temperature. Hence, IMCs and Kirkendall voids continue to grow, as do related effects such as tin whiskers.

Stay tuned. Next time we will discuss IMC growth rates and resulting effects in stress testing as we wrap up this series on IMCs.

Cheers,

Dr. Ron

 

Wicked Wicking

This PCB assembly challenge involved attaching a solar panel to one side of a pad using solder paste with a pass through an SMT reflow soldering oven.

Solder wicking through the unmasked vias to the back side forms unacceptable “bumps” on top of the vias.

The attachment or bond itself wasn’t the issue; but after the first trial runs, it was clear that solder wicking through the unmasked vias was going to be. Solder would wick through the unmasked vias to the back side and form “bumps” on top of the vias.

These bumps made the surface nonplanar and of course were unacceptable. It wasn’t an issue of using excess solder paste. But the “wicked wicking” had to be stopped, or at least prevented.

Kapton tape is applied to cover the unmasked vias; it will block the molten solder from leaking through.

But how? Clearly, to keep the solder where we wanted it to remain during reflow, we had to find a way to prevent it from wicking up, collecting at the opposite ends of the vias and forming bumps. We had to find a solution that was simple, temporary, and tolerant of reflow soldering temperatures. The answer was Kapton polyimide tape, a familiar product to PCB assemblers for many years, and a material that does not degrade at reflow temperatures.

Kapton tape was applied to cover the unmasked vias in order to block the molten solder from leaking through the vias to the back side during reflow. After reflow and cooling, it was a simple matter to peel off the tape. This temporary masking solution worked; there were no more solder bumps on the back side of the assembly, and the cost of the fix in terms of time and material was very low.

Figure 3. This temporary masking solution worked; there are no more solder bumps on the back side of the assembly.

Roy Akber

www.rushpcb.com